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Abstract

We present a trainable system for detecting frontal and near-frontal views
of faces in still gray images using Support Vector Machines (SVMs). We
�rst consider the problem of detecting the whole face pattern by a sin-
gle SVM classi�er. In this context we compare di�erent types of image
features, present and evaluate a new method for reducing the number
features and discuss practical issues concerning the parameterization of
SVMs and the selection of training data. The second part of the paper
describes a component-based method for face detection consisting of a
two-level hierarchy of SVM classi�ers. On the �rst level, component clas-
si�ers independently detect components of a face, such as the eyes, the
nose, and the mouth. On the second level, a single classi�er checks if
the geometrical con�guration of the detected components in the image
matches a geometrical model of a face.

Copyright c Massachusetts Institute of Technology, 2000
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1 Introduction

Over the past ten years face detection has been thoroughly studied in computer vision
research for mainly two reasons. First, face detection has a number of interesting
applications: It can be part of a face recognition system, a surveillance system, or a
video-based computer/machine interface. Second, faces form a class of visually similar
objects which simpli�es the generally diÆcult task of object detection. In this context,
detecting chairs is often mentioned as an example where the high variation within the
object class leads to a merely unsolvable detection problem. Besides the variability
between individual objects of the same class, detection algorithms have to cope with
variations in the appearance of a single object due to pose and illumination changes.
Most in the past research work on face detection focussed on detecting frontal faces
thus leaving out the problem of pose invariance. Although there is still some space for
improvement on frontal face detection, the key issue of current and future research
seems to be pose invariance.

In the following we give a brief overview on face detection techniques. One
category of systems relies on detecting skin parts in color images [Wu et al. 99,
Saber & Tekalp 96]. Common techniques for skin color detection estimate the distri-
bution of skin color in the color space using labeled training data [Jebara & Pentland 97,
Jones & Rehg 99]. A major problem of skin color detection is its sensitivity to changes
in the spectral composition of the lighting and to changes in the characteristics of
the camera. Therefore, most systems generate hypotheses by the skin color detec-
tor and verify them by a front-end pattern classi�cation module. Depending on the
application there are other eÆcient ways of generating object hypotheses. In case
of a static video camera and a static background scenery, background subtraction
[Ivanov et al. 98, Toyama et al. 99] is commonly used to detect objects.

Another category of algorithms performs face detection in still gray images. Since
there are no color and motion cue available, face detection boils down to a pure
pattern recognition task. One of the �rst systems for detecting faces in gray images
combines clustering techniques with neural networks [Sung 96]. It generates face and
non-face prototypes by clustering the training data consisting of 19�19 histogram
normalized face images. The distances between an input pattern and the prototypes
are classi�ed by a Multi-Layer Perceptron. In [Osuna 98] frontal faces are detected
by a SVM with polynomial kernel. A system able to deal with rotations in the image
plane was proposed by [Rowley et al. 97]. It consists of two neural networks, one for
estimating the orientation of the face, and another for detecting the derotated faces.
The recognition step was improved [Rowley et al. 98] by arbitrating between inde-
pendently trained networks of identical structure. The above described techniques
have common classi�ers which were trained on patterns of the whole face. A na��ve
Bayesian approach was taken in [Schneiderman & Kanade 98]. The method deter-

1



mines the empirical probabilities of the occurrence of 16�16 intensity patterns within
64�64 face images. Assuming statistical independence between the small patterns,
the probability for the whole pattern being a face is calculated as the product of the
probabilities for the small patterns. Another probabilistic approach which detects
small parts of faces is proposed in [Leung et al. 95]. Local feature extractors are
used to detect the eyes, corner of the mouth, and tip of the nose. Assuming that
the position of the eyes is properly determined, the geometrical con�guration of the
detected parts in the image is matched with a model con�guration by conditional
search. A related method using statistical models is published in [Rikert et al. 99].
Local features are extracted by applying multi-scale and multi-orientation �lters to
the input image. The responses of the �lters on the training set are modeled as Gaus-
sian distributions. In contrast to [Leung et al. 95], the con�guration of the local �lter
responses is not matched with a geometrical model. Instead, the global consistency
of the pattern is veri�ed by analyzing features at a coarse resolution. Detecting com-
ponents has also been applied to face recognition. In [Wiskott 95] local features are
computed on the nodes of an elastic grid. Separate templates for eyes, the nose and
the mouth are matched in [Beymer 93, Brunelli & Poggio 93].

There are two interesting ideas behind part- or component-based detection of
objects. First, some object classes can be described well by a few characteristic object
parts1 and their geometrical relation. Second, the patterns of some object parts might
vary less under pose changes than the pattern belonging to the whole object. The
two main problems of a component-based approach are how to choose the set of
discriminatory object parts and how to model their geometrical con�guration. The
above mentioned approaches either manually de�ne a set of components and model
their geometrical con�guration or uniformly partition the image into components
and assume statistical independence between the components. In our system we
started with a manually de�ned set of facial components and a simple geometrical
model acquired from the training set. In a further step we developed a technique for
automatically extracting discriminatory object parts using a database of 3-D head
models.

The outline of the paper is as follows: In Chapter 2 we compare di�erent types of
image features for face detection. Chapter 3 is about feature reduction. Chapter 4
contains some experimental results on the parameterization of an SVM for face detec-
tion. Di�erent techniques for generating training sets are discussed in Chapter 5. The
�rst part of the paper about face detection using a single SVM classi�er concludes
in Chapter 6 with experimental results on standard test sets. Chapter 7 describes
a component-based system and compares it to a whole face detector. Chapter 8
concludes the paper.

1In this paper we use the expression object part both for the 3-D part of an object and the 2D
image of a 3-D object part.
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2 Extracting image features

Regarding learning, the goal of image feature extraction is to process the raw pixel
data such that variations between objects of the same class (within-class variations)
are reduced while variations relevant for separating between objects of di�erent classes
(between-class variations) are kept. Sources of within-class variations are changes in
the illumination, changes in the background, and di�erent properties of the camera.
In [Sung 96] three preprocessing steps were applied to the gray images to reduce
within-class image variations. First, pixels close to the boundary of the 19�19 images
were removed in order to eliminate parts belonging to the background. Then a
best-�t intensity plane was subtracted from the gray values to compensate for cast
shadows. Histogram equalization was �nally applied to remove variations in the
image brightness and contrast. The resulting pixel values were used as input features
to the classi�er. We compared these gray value features to gray value gradients and
Haar wavelets. The gradients were computed from the histogram equalized 19�19
image using 3�3 x- and y-Sobel �lters. Three orientation tuned masks (see Fig. 1)
in two di�erent scales were convoluted with the 19�19 image to compute the Haar
wavelets. This lead to a 1,740 dimensional feature vector. Examples for the three
types of features are shown in Fig. 2.

-1-1
-1

1
1

1

wavelets in 2D

vertical horizontal diagonal

Figure 1: Convolution masks for calculating Haar wavelets.

a) b) c) d)

Original Histogram
equalized

Gradients Haar Wavelets

Figure 2: Examples of extracted features. The original gray image is shown in a), the
histogram equalized image in b), the gray value gradients in c), and Haar wavelets
generated by a single convolution mask in two di�erent scales in d).
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Gray, gray gradient and Haar wavelet features were rescaled to be in a range be-
tween 0 and 1 before they were used for training an SVM with 2nd-degree polynomial
kernel. The training data consisted of 2,429 face and 19,932 non-face images. The
classi�cation performance was determined on a test set of 118 gray images with 479
frontal faces2. Each image was rescaled 14 times by factors between 0.1 and 1.2 to
detect faces at di�erent scales. A 19x19 window was shifted pixel-by-pixel over each
image. Overall, about 57,000,000 windows were processed. The Receiver Operator
Characteristic (ROC) curves are shown in Fig. 3, they were generated by stepwise
variation of the classi�cation threshold of the SVM. Histogram normalized gray val-
ues are the best choice. For a �xed FP rate the detection rate for gray values was
about 10% higher than for Haar wavelets and about 20% higher than for gray gra-
dients. We trained an SVM with linear kernel on the outputs of the gray/gradient
and gray/wavelet classi�ers to �nd out whether the combination of two feature sets
improves the performance. For both combinations the results were about the same
as for the single gray classi�er.

Features
(Training: 2,429 faces, 19,932 non-faces, Test: 118 images, 479 faces, 56,774,966 windows)
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Figure 3: ROC curves for SVMs with 2nd-degree polynomial kernel trained on dif-
ferent types of image features.

2The test set is a subset of the CMU test set 1 [Rowley et al. 97] which consists of 130 images
and 507 faces. We excluded 12 images containing line-drawn faces and non-frontal faces.
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3 Feature Reduction

The goal of feature reduction is to improve the detection rate and to speed-up the
classi�cation process by removing class irrelevant features. We investigated two ways
of feature reduction: a) Generating a new set of features by linearly combining the
original features and b) selecting a subset of the original features.

3.1 Linear combination of features

We evaluated two techniques which generate new feature sets by linearly combining
the original features:

� Principal Component Analysis (PCA) is a standard technique for generating a
space of orthogonal, uncorrelated features.

� Iterative Linear Classi�cation (ILC) determines the most class discriminant, or-
thogonal features by iteratively training a linear classi�er on the labeled training
samples. The algorithm consists of two steps:

a) Determine the direction for separating the two classes by training a linear
classi�er on the current training samples.

b) Generate a new sample set by projecting the samples into a subspace that
is orthogonal to the direction calculated in a) and continue with step a).

The new N -dimensional feature space is spanned by the N �rst directions cal-
culated in step a). In the following experiments we used an SVM as linear
classi�er.

Both techniques were applied to the 283 gray value features described in Chap-
ter 2. We downsized the previously used training and test sets in order to perform a
large number of tests. The new negative training set included 4,550 samples randomly
selected from the original negative training set. The positive training data remained
unchanged. The new test set included all face patterns and 23,570 non-face patterns
of the CMU test set 1. The non-face patterns were selected by the classi�er described
in Chapter 2 as the 23,570 non-face patterns which were most similar to faces. An
SVM with a 2nd-degree polynomial kernel was trained on the reduced feature sets.
The ROC curves are shown in Fig. 4 and 5 for PCA and ILC respectively. The
�rst 3 ILC features were superior to the �rst 3 PCA features. However, increasing
the number of ILC features up to 10 did not improve the performance. This is be-
cause ILC does not generate uncorrelated features. Indeed, the 10 ILC features were
highly correlated with an average correlation of about 0.7. Increasing the number
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of PCA features up to 20, on the other hand, steadily improved the classi�cation
performance until it equaled the performance of the system trained on the original
283 features. Reducing the number of features to 20 sped-up the classi�cation by a
factor of 142 = 196 for a 2nd-degree polynomial SVM.

Feature Reduction PCA
(Training: 2,429 faces, 4,550 non-faces, Test: 479 faces, 23,570 non-faces)
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Figure 4: ROC curves for SVMs with 2nd-degree polynomial kernel trained on PCA
features. The PCA has been calculated on the whole training set.

Feature Reduction with ILC
(Training: 2,429 faces, 4,450 non-faces, Test: 479 faces, 23,570 non-faces)
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Figure 5: ROC curves for SVMs with 2nd-degree polynomial kernel trained on feature
sets generated by ILC.
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3.2 Selecting features

We developed a technique for selecting class relevant features based on the decision
function f(x) of an SVM:

f(x) =
X

i

�iyiK(x;xi) + b; (1)

where xi are the Support Vectors, �i the Lagrange multipliers, yi the labels of the
Support Vectors (-1 or 1), K(�; �) the kernel function, and b a constant. A point x
is assigned to class 1 if f(x) > 0, otherwise to class -1. The kernel function K(�; �)
de�nes the dot product in some feature space F �. If we denote the transformation
from the original feature space F to F � by �(x), Eq. (1) can be rewritten as:

f(x) = w � �(x) + b; (2)

where w =
P

i �iyi�(xi). Note that the decision function in Eq. (2) is linear on the
transformed features x� = �(x). For a 2nd-degree polynomial kernel with K(x;y) =

(1 + x � y)2, the transformed feature space F � with dimension N� = (N+3)N
2

is given

by x� = (
p
2x1;

p
2x2; ::;

p
2xN ; x

2
1; x

2
2; ::; x

2
N ;
p
2x1x2;

p
2x1x3; ::;

p
2xN�1xN ).

The contribution of a feature x�n to the decision function in Eq. (2) depends on
wn. A straightforward way to order the features is by decreasing jwnj. Alternatively,
we weighted w by the Support Vectors to account for di�erent distributions of the
features in the training data. The features were ordered by decreasing jwn

P
i yix

�
i;nj,

where x�i;n denotes the n-th component of Support Vector i in feature space F
�. Both

ways of feature ranking were applied to an SVM with 2nd-degree polynomial kernel
trained on 20 PCA features corresponding to 230 features in F �. In a �rst evaluation
of the rankings we calculated 1

M

P
i jf(xi)� fS(xi)j for allM Support Vectors, where

fS(x) is the decision function using the S �rst features according to the ranking. Note,
that we did not retrain the SVM on the reduced feature set. The results in Fig. 6
show that ranking by the weighted components of w lead to a faster convergence of
the error towards 0. The �nal evaluation was done on the test set. Fig. 7 shows
the ROC curves for 50, 100, and 150 features for both ways of ranking. The results
con�rm that ranking by the weighted components of w is superior. The ROC curve
for 100 features on the test set was about the same as for the complete feature set.

By combining PCA with the above described feature selection we could reduce
the originally (283+3)283

2
= 40; 469 features in F � to 100 features without loss in clas-

si�cation performance on the test set.
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Partial Sum for Support Vectors
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Figure 6: Classifying Support Vectors with a reduced number of features. The x-axis
shows the number of features, the y-axis is the mean absolute di�erence between the
output of the SVM using all features and the same SVM using the S �rst features only.
The features were ranked according to the components and the weighted components
of the normal vector of the separating hyperplane.

Feature Selection
(Training: 2,429 faces, 4,550 non-faces, Test: 479 faces, 23,570 non-faces)
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Figure 7: ROC curves for reduced feature sets.
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4 Parameterization of SVMs

The choice of the classi�er and its parameterization play an important role in the over-
all performance of a learning-based system. We chose the SVM as classi�er since it is
well founded in statistical learning theory [Vapnik 98] and has been successfully ap-
plied to various object detection tasks in computer vision [Oren et al. 97, Osuna 98].
An SVM is parameterized by its kernel function and the C value which determines
the constraint violations during the training process. For more detailed information
about SVMs refer to [Vapnik 98].

4.1 Kernel function

Three common types of kernel functions were evaluated in our experiments:

� Linear kernel: K(x;y) = x � y
� Polynomial kernel: K(x;y) = (1 + x � y)n, n was set to 2 and 3.

� Gaussian kernel: K(x;y) = exp(�kx�yk2

�2
), �2 was set to 5 and 10.

All experiments were carried out on the training and test sets described in Chap-
ter 3. The ROC curves are shown in Fig. 8. The 2nd-degree polynomial kernel seems a
good compromise between computational complexity and classi�cation performance.
The SVM with Gaussian kernel (�2 = 5) was slightly better but required about 1.5
times more Support Vectors (738 versus 458) than the polynomial SVM.

4.2 C-parameter

We varied C between 0.1 and 100 for an SVM with 2nd-degree polynomial kernel.
Some results are shown in Fig. 9. The detection performance slightly increases with
C until C = 1. For C � 1 the error rate on the training data was 0 and the decision
boundary did not change any more.
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Kernel Functions
(Training: 2,429 faces, 4,450 non-faces, Test: 479 faces, 23,570 non-faces)
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Figure 8: ROC curves for di�erent kernel functions.

C Parameter
(Training: 2,429 faces, 4,450 non-faces, Test: 479 faces, 23,570 non-faces)
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Figure 9: ROC curves for di�erent values of C.
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5 Training Data

Besides selecting the input features and the classi�er, choosing the training data is
the third important step in developing a classi�cation system.

5.1 Positive training data

Extracting face patterns is usually a tedious and time-consuming work that has to be
done manually. An interesting alternative is to generate arti�cial samples for training
the classi�er [Niyogi et al. 98]. In [Rowley et al. 97, Schneiderman & Kanade 98] the
training set was enlarged by applying various image transformation to the original
face images. We went a step further and generated a completely synthetic set of
images by rendering 3-D head models [Vetter 98]. Using 3-D models for training has
two interesting aspects: First, illumination and pose of the head are fully controllable
and second, images can be generated automatically in large numbers by rendering the
3-D models. To create a large variety of synthetic face patterns we morphed between
di�erent head models and modi�ed the pose and the illumination. Originally we had
7 textured head models acquired by a 3-D scanner. Additional head models were
generated by 3-D morphing between all pairs of the original models. The heads were
rotated between �15Æ and 15Æ in azimuth and between �8Æ and 8Æ in the image plane.
The faces were illuminated by ambient light and a single directional light pointing
towards the center of the face. The position of the light varied between �30Æ and
30Æ in azimuth and between 30Æ and 60Æ in elevation. Overall, we generated about
5,000 face images. The negative training set was the same as in Chapter 3. Some
examples of real and synthetic faces from our training sets are shown in Fig. 10. The
ROC curves for SVMs trained on real and synthetic data are shown in Fig. 11. The
signi�cant di�erence in performance indicates that the image variations captured in
the synthetic data do not cover the variations present in real face images. Most likely
because our face models were too uniform: No people with beard, no di�erences in
facial expression, no di�erences in skin color.
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Illumination

Rotation

Face Models

Figure 10: Examples of real and synthetic face images. The synthetic faces were
generated by rendering 3-D head models under varying pose and illumination. The
resolution of the synthetic faces was 50�50 pixels after rendering. For training the
face detector we rescaled the images to 19�19 pixels.
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Figure 11: ROC curves for classi�ers trained on real and synthetic faces.
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5.2 Negative training data

Non-face patterns are abundant and can be automatically extracted from images that
do not contain faces. However, it would require a huge number of randomly selected
samples to fully cover the variety of non-face patterns. Iterative bootstrapping of the
system with false positives (FPs) is a way to keep the training set reasonably small
by speci�cally picking non-face patterns that are useful for learning. Fig. 12 shows
the ROC curves for an SVM trained on the 19,932 randomly selected non-face pat-
terns and an SVM trained on additional 7,065 non-face patterns determined in three
bootstrapping iterations. At 80% detection rate the FP rate for the bootstrapped
system was about 2 �10�6 per classi�ed pattern which corresponds to 1 FP per image.
Without bootstrapping, the FP rate was about 3 times higher.

Bootstrapping
(Training: 2,429 faces, no boot: 19,932 non-faces, boot: 26,997 non-faces, Test: 118 images, 479 faces, 56,774,966 windows)
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Figure 12: ROC curves for a classi�er which was trained on 19,932 randomly selected
non-face patterns and for a classi�er which was bootstrapped with 7,065 additional
non-face patterns.
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6 Results and comparison to other face detection

systems

There are two sets of gray images provided by the CMU [Rowley et al. 98] which
are commonly used for evaluating face detection systems [Sung 96, Yang et al. 99,
Osuna 98, Rowley et al. 98, Schneiderman & Kanade 98]. These test sets provide a
good basis for comparisons between face detection systems. However, the use of dif-
ferent training data and di�erent heuristics for suppressing false positives complicates
comparisons.

To achieve competitive detection results we further enlarged the previously used
positive and negative training sets and also implemented heuristics for suppressing
multiple detections at nearby image locations. An SVM with 2nd-degree polynomial
kernel was trained on histogram equalized 19� 19 images of 10,038 faces and 36,220
non-faces. The positive training set consisted of 5,813 real faces and 4,225 synthetic
faces. The synthetic faces were generated from a subset of the real faces by rotating
them between �2Æ and 2Æ and changing their aspect ratio between 0.9 and 1.1. The
negative training set was generated from an initial set of 19,932 randomly selected
non-face patterns and additional 16,288 non-face patterns determined in six boot-
strapping iterations. For testing, each test image was rescaled 14 times by factors
between 0.1 and 1.2. A 19�19 window was shifted pixel-by-pixel over each image. We
applied two heuristics to remove multiple detections at nearby image locations. First,
a detection was suppressed if there was at least one detection with a higher SVM out-
put value in its neighborhood. The neighborhood in the image plane was de�ned as a
19� 19 box around the center of the detection. The neighborhood in the scale space
was set to [0:5; 2]. The second heuristic counted the number of detections within the
neighborhood. If there were less than three detections, the detection was suppressed.
The results of our classi�er are shown in Fig. 13 and compared to other results in
Table 1. Our system outperforms a previous SVM-based face detector [Osuna 98] due
to a larger training set and improvements in suppressing multiple detections. The
results achieved by the na��ve Bayes classi�er [Schneiderman & Kanade 98] and the
SNoW-based face detector [Yang et al. 99] are better than our results. However, it is
not clear which heuristics were used in these systems to suppress multiple detections
and how these heuristics a�ected the results.
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Subset of test set 1 Test set 1
23 images, 155 faces 130 images, 507 facesSystem

Det. Rate FPs Det. Rate FPs
[Sung 96] 84.6% 13 N/A N/A
Neural Network
[Osuna 98] 74.2% 20 N/A N/A
SVM
[Rowley et al. 98] N/A N/A 90.9% 738
Single neural network
[Rowley et al. 98] 84.5% 8 84.4% 79
Multiple neural networks
[Schneiderman & Kanade 98]3 91.1% 12 90.5% 33
Na��ve Bayes
[Yang et al. 99]4 94.1% 3 94.8% 78
SNoW, multi-scale
Our system5 84.7% 11 85.6% 9

90.4% 26 89.9% 75

Table 1: Comparison between face detection systems.

Face Detection
Training: 10,038 faces, 36,220 non-faces,

Test set 1: 23 images, 157 faces, 7,628,845 windows, Test set 2: 118 images, 479 faces, 56,774,966 windows
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Figure 13: ROC curves for bootstrapped classi�er with heuristics for suppressing
multiple detections.

3Five images of hand-drawn faces were excluded from test set 1.
4Images of hand-drawn faces and cartoon faces were excluded from test set 1.
5Twelve images containing line-drawn faces, cartoon faces and non-frontal faces were excluded

from test set 1.
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7 Component-based face detection

7.1 Motivation

Until now we considered systems where the whole face pattern was classi�ed by a
single SVM. Such a global approach is highly sensitive to changes in the pose of an
object. Fig. 14 illustrates the problem for the simple case of linear classi�cation.
The result of training a linear classi�er on frontal faces can be represented as a
single face template, schematically drawn in Fig. 14 a). Even for small rotations the
template clearly deviates from the rotated faces as shown in Fig. 14 b) and c). The
component-based approach tries to avoid this problem by independently detecting
parts of the face. In Fig. 15 the eyes, nose, and the mouth are represented as single
templates. For small rotations the changes in the components are small compared to
the changes in whole face pattern. Slightly shifting the components is suÆcient to
achieve a reasonable match with the rotated faces.

a) b) c)

Figure 14: Matching with a single template. The schematic template of a frontal face
is shown in a). Slight rotations of the face in the image plane b) and in depth c) lead
to considerable discrepancies between template and face.

a) b) c)

Figure 15: Matching with a set of component templates. The schematic component
templates for a frontal face are shown in a). Shifting the component templates can
compensate for slight rotations of the face in the image plane b) and in depth c).
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7.2 Component-based classi�er

An overview of our two-level component-based classi�er is shown in Fig. 16. A similar
architecture was used for people detection [Mohan 99]. On the �rst level, component
classi�ers independently detect the eyes (9 � 7 pixels), the nose (9 � 11 pixels) and
the mouth (13�7 pixels). Each component classi�er was trained on a set of manually
extracted facial components and a set of randomly selected non-face patterns. The
components were extracted from the same set of 2,429 real face images as used in
previous experiments.

On the second level the geometrical con�guration classi�er performs the �nal face
detection by combining the results of the component classi�ers. Given a 19�19 image,
the maximum outputs of the eyes, nose, and mouth classi�ers within rectangular
search regions6 around the expected positions of the components are used as inputs
to the geometrical con�guration classi�er. The search regions have been calculated
from the mean and standard deviation of the components' locations in the training
images.

Output of
Nose Classifier

First Level:
Component
Classifiers

Output of
Eye Classifier

Output of
Mouth Classifier

Second Level:
Detection of
Configuration of
Components

Classifier

Classifier

Figure 16: System overview of the component-based classi�er. On the �rst level,
windows of the size of the components (solid lined boxes) are shifted over the face
image and classi�ed by the component classi�ers. On the second level, the maximum
outputs of the component classi�ers within prede�ned search regions (dotted lined
boxes) are fed into the geometrical con�guration classi�er.

6To account for changes in the size of the components, the outputs were determined over multiple
scales of the input image. In our tests, we set the range of scales to [0:75; 1:2].
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The ROC curves for CMU test set 1 are shown in Fig. 17. The component
classi�ers were SVMs with 2nd-degree polynomial kernels and the geometrical con-
�guration classi�er was a linear SVM7. Up to about 90% recognition rate, the four
component system performs worse than the whole face classi�er. Probably due to
class-relevant parts of the face that were not covered by the four components. There-
fore, we added the whole face as a �fth component similar to the template-based face
recognition system proposed in [Brunelli & Poggio 93]. As shown in Fig. 17 the �ve
component classi�er performs similar to the whole face classi�er. This indicates that
the whole face is the most dominant of the �ve components.

To check the robustness of the classi�ers against object rotations we performed
tests on synthetic faces generated from 3-D head models. The synthetic test set
consisted of two groups of 19�19 face images: 4,574 faces rotated in the image plane,
and 15,865 faces rotated in depth. At each rotation angle we determined the FP
rate for 90% detection rate based on the ROC curves in Fig. 17. The results in
Fig. 18 and 19 show that the best performance was achieved by the �ve component
system. However, it deteriorated much faster with increasing rotation than the four
component system. This is not surprising since the whole face pattern changes more
under rotation than the patterns of the other components.

Whole Face Classifier vs. Component-based Classifier
(Training: 2,429 faces, 19,932 non-faces, Test: 118 images, 479 faces, 56,774,966 windows)
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Figure 17: ROC curves for frontal faces.

7Alternatively we tried linear classi�ers for the components and a polynomial kernel for the
geometrical classi�er but the results were clearly worse.
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Whole face vs. Components, Rotation in Image Plane
Training: 2,429 faces, 19,932 non-faces, Test: 4,574 synthetic images
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Figure 18: Classi�cation results for synthetic faces rotated in the image plane.

Whole face vs. Components, Rotation in Depth
Training: 2,429 faces, 19,932 non-faces, Test: 15,865 synthetic images
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Figure 19: Classi�cation results for synthetic faces rotated in depth.
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7.3 Determining the components: preliminary results

In our previous experiments we manually selected the eyes, the nose and the mouth
as characteristic components of a face. Although this choice is somehow obvious,
it would be more sensible to choose the components automatically based on their
discriminative power and their robustness against pose changes. Moreover, for ob-
jects other than faces, it might be diÆcult to manually de�ne a set of meaningful
components. In the following we present two methods for learning components from
examples.

The �rst method arbitrarily de�nes components and lets the geometrical con�g-
uration classi�er learn to weight the components according to their relevancy. We
carried out an experiment with 16 non-overlapping components of size 5 � 5 evenly
distributed on the 19 � 19 face pattern (see Fig. 20). As in previous experiments
the component classi�ers were SVMs with 2nd-degree polynomial kernels and the
geometrical con�guration classi�er was a linear SVM. The training errors of the com-
ponent classi�ers give information about the discriminative power of each component
(see Fig. 21). The components 5, 8, 9, and 12 are located on the cheeks of the face.
They contain only few gray value structures which is reected in the comparatively
high error rates. Surprisingly, the components 14 and 15 around the mouth also show
high error rates. This might be due to variations in the facial expression and slight
misalignments of the faces in the training set.

1

16

41

Figure 20: Partitioning the face pattern into 16 non-overlapping components.

An alternative to using a large set of arbitrary components is to speci�cally gen-
erate discriminative components. Following this idea, we developed a second method
that automatically determines rectangular components in a set of synthetic face im-
ages. The algorithm starts with a small rectangular component located around a
pre-selected point in the face (e.g. center of the left eye)8. The component is ex-
tracted from all synthetic face images to build a training set of positive examples.

8We could locate the same facial point in all face images since we knew the point-by-point
correspondences between the 3-D head models.
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Training reuslts for component classifiers
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Figure 21: Training results for the 16 component classi�ers.

We also generate a training set of non-face patterns that have the same rectangular
shape as the component. After training an SVM on the component data we estimate
the performance of the SVM according to its leave-one-out error [Vapnik 98]:

� = R2
w

2; (3)

where R is the radius of the smallest sphere9 in the feature space F � containing
the Support Vectors, and w2 is the square norm of the coeÆcients of the SVM (see
Eq. (2)). After determining � we enlarge the component by expanding the rectangle
by one pixel into one of four directions (up, down, left, right). Again, we generate
training data, train an SVM and determine �. We keep the expansion if it lead to a
decrease in � else it is rejected and an expansion into one of the remaining directions
was tried. This process is continued until the expansions into all four directions
lead to an increase of �. In a preliminary experiment we applied the algorithm to
three 3� 3 regions located at the center of the eye, tip of the nose and center of the
mouth. The �nal components are shown in Fig. 22, they were determined on about
4,500 synthetic faces (65� 85 pixels, rotation in depth between �45Æ and 45Æ). The

9In our experiments we replaced R2 in Eq. (3) by the dimensionality N of space F �. This because
our data points lay within an N -dimensional cube of length 1, so the smallest sphere containing the
data had radius equal to

p
N=2. This approximation was mainly for computational reasons as in

order to compute R we need to solve an optimization problem [Osuna 98].
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eyes (24� 8 pixels) and mouth (30� 12 pixels) are similar to the manually selected
components. The component located at the tip of the nose (6 � 4 pixels), however,
is small. This indicates that the pattern around the tip of the nose strongly varies
under rotation.

Figure 22: Automatically generated components.

8 Conclusion and future work

We presented and compared two systems for frontal and near-frontal face detection: a
whole face detection system and a component-based detection system. Both systems
are trained from examples and use SVMs as classi�ers. The �rst system detects the
whole face pattern with a single SVM. In contrast, the component-based system per-
forms the detection by means of a two level hierarchy of classi�ers. On the �rst level,
the component classi�ers independently detect parts of the face, such as eyes, nose,
and mouth. On the second level, the geometrical con�guration classi�er combines the
results of the component classi�ers and performs the �nal detection step. In addition
to the whole face and component-based face detection approaches we presented a
number of experiments on image feature selection, feature reduction and selection of
training data. The main points of the paper are as follows:

� Gray values are better input features for a face detector than are Haar wavelets
and gradient values.

� By combining PCA- with SVM-based feature selection we sped-up the detection
system by two orders of magnitude without loss in classi�cation performance.

� Bootstrapping the classi�er with non-face patterns increased the detection rate
by more than 5%.

� We developed a component-based face detector which is more robust against
face rotations than a comparable whole face detector.
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� We proposed a technique for learning characteristic components from examples.

We have shown that a component-based classi�er trained on frontal faces can deal
with slight rotations in depth. The next logical step is to cover a larger range of pose
changes by training the component classi�ers on rotated faces. Another promising
topic for further research is learning a geometrical model of the face by adding the
image locations of the detected components to the input features of the geometrical
con�guration classi�er.
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